Главная arrow Программирование arrow AVR arrow Атомарный доступ к переменным Saturday, October 21 2017  
ГлавнаяКонтактыАдминистрированиеПрограммированиеСсылки
UK-flag-ico.png English Version
GERMAN-flag-ico.png Die deutsche Version
map.gif карта сайта
нашли опечатку?

Пожалуйста, сообщите об этом - просто выделите ошибочное слово или фразу и нажмите Shift Enter.

Поделиться:

Атомарный доступ к переменным Версия для печати
Написал microsin   
02.07.2010

При отладке встраиваемых приложений, наиболее сложно отловить ошибки,  проявляющие себя не постоянно, а лишь время от времени. Одна из причин подобных багов: переменные, доступ к которым осуществляется асинхронно. Такие переменные должны быть правильно определены, и иметь соответствующую защиту.

Определение должно включать ключевое слово volatile. Оно информирует компилятор, о том, что переменная может быть изменена не только из текущего выполняемого кода, но и из других мест. Тогда компилятор будет избегать определенных оптимизаций этой переменной.

Чтобы защитить общую переменную, каждая операция доступа к ней должна быть атомарной. То есть не должна прерываться до своего окончания. Например, доступ к 32 или 16 разрядной переменной на 8-ми разрядной архитектуре не атомарный, поскольку операции чтения или записи требуют больше одной инструкции.  

Рассмотрим типичный пример общедоступной переменной – программный таймер. В обработчике прерывания его значение изменяется, а в основном коде - считывается. Если в обработчике другие прерывания  запрещены, как, например, по дефолту сделано в микроконтроллерах AVR, то операция изменения переменной атомарна и никаких косяков не случится.
 
volatile unsigned long system_timer = 0;
 
#pragma vector = TIMER0_COMP_vect
__interrupt void Timer0CompVect(void)
{
    system_timer++;
}

С другой стороны в основном цикле программы прерывания чаще всего разрешены, и вариант небезопасного кода мог бы выглядеть так:

if (system_timer >= next_cycle)
{
  next_cycle += 100;
   do_ something();
}

Этот код небезопасен, потому что  операция чтение переменной system_timer не атомарна. В то время как мы читаем один из байтов переменной system_timer, может возникнуть прерывание TIMER0_COMP и обработчик изменит ее значение. Тогда, по возвращению в основную программу, мы прочтем оставшуюся часть переменной уже от ее нового значения. В ряде случаев микс из старого и нового значения не вызовет сбоев,  но в других может сильно повлиять на поведение программы. Ну, например, если старое значение system_timer было 0x00ffffff, а новое 0x01000000.

Чтобы защитить доступ к переменной system_timer, можно использовать мониторную функцию, для этого перед именем функции указывается ключевое слово __monitor.

__monitor unsigned long get_system_timer(void)
{
   return system_timer;
}
 
...
if (get_system_timer() >= next_cycle)
{
   next_cycle += 100;
   do_ something();
}

Мониторная функция – это функция, которая при входе сохраняет регистр SREG, запрещает прерывания на время своего выполнения, а перед выходом восстанавливает содержимое SREG.

Если требуется, чтобы прерывания запрещались в каком-то конкретном участке кода, можно использовать intrinsic функции.

#include <intrinsics.h>

unsigned long tmp;
unsigned char oldState;
oldState = __save_interrupt();//сохраняем регистр SREG
__disable_interrupt();             //запрещаем прерывания
tmp = system_timer;           //считываем значение system_timer во временную переменную  __restore_interrupt(oldState);//восстанавливаем SREG

if (tmp >= next_cycle)
{
   next_cycle += 100;
   do_ something();
}

Средства Си++ позволяют встроить эту логику в класс.

#include <intrinsics.h>
 
class Mutex
{
  public:
   Mutex ()
  {
      current_state = __save_interrupt();
       __disable_interrupt();
   }
 
   ~Mutex ()
   {
     __restore_interrupt(current_state);
   }
 
  private:
     unsigned char current_state;
};

….
 
unsigned long tmp;
{
  Mutex m;                    //создаем объект класса, теперь доступ будет атомарным
  tmp = system_timer;    //сохраняем system_timer во временной переменой
}
if (tmp >= next_cycle)
{
   next_cycle += 100;
   do_ something();
}

При создании объекта m конструктор сохранит регистр SREG, и запретит прерывания. По окончанию блока – деструктор восстановит содержимое SREG. Красиво, да?

Вообщем принцип везде один, а вариантов реализации много. Можно, например, при доступе к переменной запрещать не все прерывания, а только те, в которых используется эта переменная.

Проблема возможна и с восьмибитной переменной. Операция вроде system_timer -= 100 компилится в несколько ассемблерных инструкций и в основном коде также может быть прервана между чтением system_timer и записью результата. Есть еще один способ чтения многобайтовых асинхронных счетчиков (без запрета прерываний) - считать переменную два раза и сравнить все байты кроме младшего. Если байты в копиях равны - берем последнее считанное значение, если не равны - считываем до тех пор, пока в двух последних считанных значениях байты не будут равны. Младший байт счетчика между чтениями может успеть измениться без переноса, поэтому он в проверке не участвует.

Как видно из примеров, код приведен для компилятора IAR. В WinAVR подобная проблема решается включением файла , в котором определены макросы для реализации атомарного доступа.
например так:

#include <util/atomic.h>
...
ATOMIC_BLOCK(AT OMIC_RESTORESTA TE)
{
// блок кода с запрещенными прерываниями
}
...

Статья взята с http://chipenable.ru/index.php/programming-c/16-volatile-critical-section.html.

Последнее обновление ( 07.07.2010 )
 

Добавить комментарий

:D:lol::-);-)8):-|:-*:oops::sad::cry::o:-?:-x:eek::zzz:P:roll::sigh:

Защитный код
Обновить

< Пред.   След. >

Top of Page
 
microsin © 2017